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Summary. Three types of residuals in time series models, namely “conditional 
residuals”, “unconditional residuals” and “innovations”, are considered with regard to (i) 
their precise definitions, (ii) their computation after model estimation, (iii) their 
approximate distributions in finite samples, and (iv) potential applications of their 
properties in model diagnostic checking. Both partially-known and new results are 
presented, showing what might be found (and, to some extent, what should be done) in 
practice when dealing with residuals after estimation of time series models. 
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1  Introduction 
 
The methodological approach introduced three decades ago by Box and Jenkins (1976) 
still represents one of the fundamental cornerstones in modern time series analysis. This 
article contributes to such approach by presenting some properties of residuals in 
autoregressive moving average (ARMA) models that do not have received much attention 
in the past. 
 Residuals constitute an important piece of information at the diagnostic checking stage 
of a tentatively entertained model, where one seeks evidence that either assesses the 
adequacy of the model or provides directions along which it should be modified. The 
usual approach consists of comparing patterns in computed residuals to those implied by 
their distributional properties under the assumption that the entertained model is adequate. 
Hence, in any given practical setting, it is important to know which residuals are being 
used for model diagnostic checking (i.e., how such residuals have been actually 
computed), and which theoretical properties should their observed patterns be compared 
to. In this respect, it is a standard practice to compare residual patterns to those of 
Gaussian white-noise (see, for example, Box et al. 1994, Chap. 8; Franses 1998, Chap. 
3; and Enders 2004, Chap. 2). However, it is at least partially known (see, for example, 
Harvey 1993, p. 76, for a general statement on this subject) that residuals from ARMA 
models do not have the statistical properties assumed on the random shocks of such 
models. Hence, the above standard practice, although firmly established, should not be 
recommended in general. A detailed simulation study supporting this point of view was 
given nearly thirty years ago by Ansley and Newbold (1979), and, to some extent, new 
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results discussed in the present article provide a theoretical justification for the empirical 
findings of those authors. 
 Various types of residuals are currently available for being used at the diagnostic 
checking stage of a tentative model. Thus, as it often happens with parameter estimation 
(see Newbold et al. 1994), residual calculations usually differ among different computer 
programs for analyzing time series data. In fact, there seems to exist some confusion in 
current practice as to which residuals are used in any given empirical work with ARMA 
models, how are they computed, and which are their theoretical distributional properties. 
Hence, the fundamental aim of the present article is to make practically accessible for 
time series analysts both partially-known and new results on residuals from ARMA 
models, by means of showing what might be found (and, to some extent, what should be 
done) in practice when dealing with residuals after estimation of any given ARMA model. 
In Section 2 of this article, three different types of residuals (namely “conditional 
residuals”, “unconditional residuals” and “innovations”) are precisely defined, and 
several explicit expressions are given for computing them in practice. In Section 3, it is 
shown (i) that both “conditional” and “unconditional” residuals follow approximate zero-
mean distributions in finite samples (with covariance matrices for which explicit and 
easily computable expressions are given for the first time), (ii) that invertibility plays a 
key role for establishing statistical convergence of residuals to white noise, and (iii) that a 
set of “normalized” residuals can be obtained in any of several equivalent ways. 
According to previous work on the subject, using this set of residuals for diagnostic 
checking usually improves the chances of not rejecting a tentative model when it is 
adequately specified. Additional discussion and conclusions are provided in Section 4. 
 For ease and brevity of exposition, results are presented only for stationary univariate 
ARMA models, although extensions to the case of stationary multivariate models are 
straightforward. Hence, similar results to those presented below can be shown to hold for 
any time series model which can be cast into a standard, stationary vector ARMA model, 
including, among many others, transfer function-noise models (Mauricio 1996) and 
partially nonstationary multivariate models with reduced-rank structure (Mauricio 2006). 
Several supplements to this article are available upon request, including (i) proofs of the 
theorems given in Section 3, (ii) numerical examples, and (iii) extensions to the case of 
multivariate models. 
 
 
2  Residual Definitions and Computations 
 
Let an observed time series T

1 2[ , , ..., ]nw w ww  be generated by a stationary process 
{Wt�} following the model 
 ( ) ( )t tB W B A  , (1) 

where 1( ) 1
p i

iiB B    and 1( ) 1
q i

iiB B    are polynomials in B of 
degrees p and q, B is the backshift operator, E[ ]t t tW W W  , and {�At�} is a white-
noise process with variance σ2. For stationarity, it is required that the roots of ( ) 0x   
lie outside the unit circle; a similar condition on ( )x  ensures that the model is 
invertible. It is also assumed that ( )x  and ( )x  do not share any common factor. 
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 If we define T
1 2[ , , ..., ]nW W WW     (n×1), T

1 2[ , , ..., ]nA A AA  (n×1), and U* 
= T

1 0 1 0[ , ..., , ..., ]p qW W A A 
   [(�p+q)×1], and consider Eq. (1) for t = 1, 2, …, n, 

then w can be regarded as a particular realization of a random vector W = 
T

1 2[ , , ..., ]nW W W  following the model 

    D W D A VU , (2) 

where Dφ and Dθ are n×n lower triangular matrices with 1’s on the main diagonal and 
−φj and −θj, respectively, down the j�th sub-diagonal, and V is an n×(�p+q) matrix with 
ij p i jV    (i = 1, …, p; j = i, …, p), ij q i j pV     (i = 1, …, q; j = p + i, 

…, p + q), and zeros elsewhere. 
 A useful approach to introducing different methods for computing residuals consists of 
considering which residuals arise naturally within different methods for computing the 
exact log-likelihood function for univariate models of the form (1) or (2). Under the 
assumption that {Wt�} is a Gaussian process, the exact log-likelihood computed for a given 
set of parameter estimates, T

1 1
ˆ ˆ ˆˆ ˆˆ[ , , ..., , , ..., ]p q      and 2̂ , is 

 12 2 2 T 1
2

ˆ ˆ ˆˆ ˆ ˆ( , | ) [ log(2 ) log | | ]l n     W Ww w w    , (3) 

where T
1 2[ , , ..., ]nw w ww     with ˆt tw w    (t = 1, 2, …, n), ̂  is an estimate of 

E[Wt], and the n×n matrix ˆ
W  is an estimate of the “auto-covariance” matrix 

2 TE[ ]W WW   . Noting Eq. (2), it can be seen that 

 1 T T 1T 1 1T( ) ( ) 
      W D D D V V D K I Z Z K   , (4) 

where 1


K D D , 1

Z D V  and 2 T

*E[ ]  U U  are n×n, n×(�p+q) and 
(�p+q)×(�p+q), respectively, parameter matrices, with Ω being readily expressible in 
terms of 1 1,..., , , ...,p q     as described, for example, in Ljung and Box (1979). 
Hence, using Eq. (4), the quadratic form T 1ˆ

Ww w   in Eq. (3) can be written as 

 T 1 T T T 1ˆˆ ˆ ˆ ˆ ˆ( )  Ww w w K I Z Z Kw     , (5) 

where K̂ , Ẑ  and ̂  represent estimates of the corresponding parameter matrices defined 
below Eq. (4). 

Definition 1. The “conditional residuals” associated with Eq. (5) are the elements of the 
n×1 vector 0 ˆâ Kw . 

Definition 2. The “unconditional residuals” associated with Eq. (5) are the elements of 
the n×1 vector T 1 1 0

0
ˆˆ ˆ ˆ ˆ( )   â I Z Z Kw â  , where 0̂  is an estimate of the n×n 

matrix T 1 T 1 T 1
0 [ ( ) ]      I Z Z I Z Z Z Z   . 

Definition 3. The “innovations” associated with Eq. (5) are the elements of the n×1 
vector 1 1 0ˆ ˆˆ( )  ê L w KL â , where L̂  is an estimate of the n×n unit lower-
triangular matrix L in the factorization TW LFL , with F being a diagonal n×n 
matrix such that Ft�>�0 (t = 1, …, n). 

 Using Definitions 1 through 3, it can be seen that equation (5) can be written in several 
equivalent ways as T 1 0T 1 0 T T 1

00
ˆ ˆ ˆ ˆ    Ww w â â â â ê F ê    . Note also that ˆ| |W  

in (4) equals both 0
ˆ| |  and ˆ| |F . Hence, every type of residuals defined previously can 
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be used to compute the exact log-likelihood given in Eq. (3). Some links between 
residuals defined thus far and usual ideas about residuals in classic time series analysis are 
considered in the following three remarks. 

Remark 1. The univariate ARMA model given in Eq. (2) can be written as 
 A KW ZU , where K and Z are defined below Eq. (4). Hence, the conditional 

residual vector can be written as 

 0 ˆ Ê[ | , ]   â Kw A W w U 0 , (6) 

which represents the estimated expectation of A given an observed time series w, under 
the condition that U*�=�0. On the other hand, the unconditional residual vector can be 
written as 
 ˆ ˆ Ê[ | ]   â Kw Zû A W w , (7) 

where 1 T 1 T 0ˆ ˆ ˆ ˆÊ[ | ] ( ) 
    û U W w Z Z Z â  is usually referred to as the 

“back-casted” value of the pre-sample vector U* (see Box et al. 1994, Chap. 7). In 
contrast to Eq. (6), Eq. (7) represents the estimated expectation of A for an observed time 
series w under no additional conditions. 

Remark 2. Eq. (6) implies that the elements of â0 can be computed recursively as 
0 0

1 1
ˆˆˆ ˆˆ ˆ[ ( ) ]

p q
t t i t i i t ii ia w w a            (t = 1, …, n), with ˆ 0jw    (i.e., 

wj = ̂ ) and 0ˆ 0ja   for j < 1. On the other hand, Eq. (7) implies that the elements of â 
can be computed recursively as 1 1

ˆˆˆ ˆ[ ( ) ]
p q

t t i t i i t ii iâ w w â            (t = 1, 
…, n), with values for ˆjw   ( 1 ,..., 0j p  ) and âj ( 1 ,..., 0j q  ) taken from the 
back-cast vector û* given below Eq. (7). Hence, both of 0

tâ  and ât are simply differences 
between an observed value wt and a corresponding fitted value (i.e., they are one-step-
ahead forecast errors), which means that both conditional and unconditional residuals are 
residuals in a fully usual sense; see Ljung and Box (1979) for further details. 

Remark 3. The innovations introduced in Definition 3 arise naturally when considering 
the “innovations form” of the exact log-likelihood (3) described, for example, in Ansley 
(1979), Mélard (1984), and Box et al. (1994, pp. 275-279). Despite the fact that 
innovations do not follow right from t = 1 the recursive relations considered in Remark 
2, they can still be interpreted as one-step-ahead forecast errors (see Brockwell and Davis 
2002, pp. 100-108), so that innovations are also residuals in a fairly usual sense. 
 
 
3  Residual Properties and Model Checking 
 
The three types of residuals considered in Section 2 are all different from each other, 
which might explain to some extent why different computer programs usually generate 
different residuals from a given estimated model for a given time series (additionally, see 
Newbold et al. 1994). However, every type of residuals considered in Section 2 can be 
used to compute a unique set of “normalized” residuals in any of several equivalent ways. 
This fact is stated precisely in Theorem 3 below, which is a direct implication of some of 
the theoretical properties of residuals to which we now turn. 
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Theorem 1. Let 0Â KW  and 1 0
0
Â Â  be the random vectors associated with the 

conditional and the unconditional residuals given in Definitions 1 and 2, respectively, 
under the assumption that the true parameter values of model (2) are known. Then, (i) 

0 2
0( , )Â 0  , and (ii) 2 1

0( , ) Â 0  , where Σ0 is given in Definition 2. 

Theorem 2. Under the assumptions of Theorem 1, invertibility of the univariate ARMA 
model (2) implies additionally that (i) both conditional and unconditional residuals 
converge in mean square to the model white-noise disturbances, (ii) both conditional and 
unconditional residuals tend to be uncorrelated, with 0Var[ ]tÂ  converging from above 
and Var[ ]tÂ  converging from below to σ2, and (iii) when q = 0 (i.e., in the case of pure 
autoregressive models), the convergence results stated in points (i) and (ii) occur exactly 
at time t = p + 1. 

Remark 4. Theorems 1 and 2 imply, in the first place, that both conditional and 
unconditional residuals should not be expected to follow white-noise patterns, even under 
perfect knowledge of the true model parameter values. If such values are replaced by 
consistent estimates (which is usually the case in applied analyses), then Theorems 1 and 
2 are expected to hold at least asymptotically (i.e., approximately in finite samples), 
implying that, in practice, observed patterns in residuals computed as in Definitions 1 and 
2 might constitute a mere indication of their theoretical properties instead of model 
misspecification. From Theorem 2, this possibility seems more likely to occur (especially 
for small sample sizes) when a model contains a moving average part with one root on or 
near the unit circle. 

Remark 5. Remarks 1 and 2, as well as point (ii) in Theorem 2, suggest that the loss of 
information implied by the conditions imposed for computing conditional residuals, 
render such residuals as a far from ideal tool for model diagnostic checking. This is 
especially true when conditional residuals are naturally computed after conditional 
maximum likelihood estimation of ARMA models (see, for example, Ansley and 
Newbold 1980; and Box et al. 1994, Chap. 7). Examples showing that conditional 
residuals often mask a notable lack of fit are not difficult to come across. 

Remark 6. Theoretical properties of innovations under the assumption that the true 
parameter values of the stationary model (2) are known, can be found, for example, in 
Box et al. (1994, pp. 275-279) and the references cited therein. Specifically, it follows 
trivially from Definition 3 that 1 2( , )Ê L W 0 F  . Additionally, the elements of Ê 
and F can be described in terms of a recursive algorithm of the Chandrasekhar type (see, 
for example, Mélard 1984), which, for an invertible model, can be shown to converge to 
a “steady state” with Ft converging to one from above and Êt converging to At in mean 
square; furthermore, for pure autoregressive models these convergence results occur 
exactly at time t = p + 1. Hence, the innovation vector Ê shows theoretical properties 
which are similar to those of Theorems 1 and 2 for Â0 and Â, in spite of their numerical 
values being computed in practice through quite different procedures. 

Theorem 3. Let 0Â KW , 1 0
0
Â Â  and 1Ê L W  be the random vectors 

associated with the three types of residuals given in Definitions 1, 2 and 3, respectively, 
under the assumption that the true parameter values of model (2) are known. Let P 
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represent a lower-triangular matrix such that T T
0  I Z Z PP  . Then, there exists 

a “normalized” residual vector Ẑ  such that 1 0 T ½ˆˆ ˆ   Z P Â P A F E , with 
2ˆ ( , )Z 0 I . Additionally, invertibility of model (2) implies that the elements of Ẑ  

converge in mean square to the model white-noise disturbances, with exact convergence 
occurring at time t = p + 1 when q = 0. 

Remark 7. Theorem 3 implies that when the true model parameter values are replaced by 
consistent estimates, the elements of the computed normalized residual vector, 

1 0 T ½ˆ ˆ ˆˆ    z P â P â F ê , should (at least approximately) follow white-noise patterns 
and converge to the model unobservable random shocks, under the hypothesis that the 
entertained model is adequate. Hence, using ẑ  in model diagnostic checking instead of â0 
or â, might help to avoid a possibly incorrect interpretation of residual autocorrelation 
(recall Remark 4), whose only source in the case of ẑ  is (at least approximately and apart 
from outliers) model misspecification. Furthermore, working with ẑ  solves also the 
theoretical heteroskedasticity associated with all of â0, â and ê, which is expected to be 
present unless mean-square convergence occurs sufficiently fast in practice. 
 
 
4  Discussion 
 
Ansley and Newbold (1979, pp. 551-553) have demonstrated that using the normalized 
residual vector ẑ  instead of the unconditional residual vector â (especially for seasonal 
models), extends the range of cases for which statistics frequently used in model 
diagnostic checking can be usefully interpreted through the usual asymptotic significance 
levels. However, these authors suggest (i) a single way of computing ẑ  (Ansley 1979), 
and (ii) that the only reason for the superior sampling properties of tests based on ẑ  is 
that unconditional residuals can, in moderate sample sizes, have variance much smaller 
than σ2, whereas normalized residuals have the same variance as the model random 
shocks. Recalling Theorems 2 and 3, the conclusions derived by Ansley and Newbold 
(1979) can be expanded as follows: (i) ẑ  can be computed in any of several equivalent 
ways, and (ii) the practical benefits from using ẑ  instead of â are associated with the fact 
that 2 1

0Var[ ]  Â   is not a diagonal matrix, so not only the unconditional residuals 
have variance smaller than σ2, but (more importantly) they are also autocorrelated. The 
simulation results reported by Ansley and Newbold (1979) are so detailed that no 
additional evidence seems to be required to demonstrate the expected practical benefits 
from using ẑ  instead of â (or â0 for that matter) in model diagnostic checking, especially 
when the model contains moving-average roots on or near the unit circle and/or when the 
sample size n is small. 
 From a computational standpoint, the most convenient method for obtaining ẑ  seems 
to be that based on the innovation vector ê, since, after model estimation, such method 
only requires n additional square roots and divisions (as opposed to a much larger number 
of operations required for computing T

0
ˆˆ ˆ ˆ I Z Z  , its Cholesky factor P̂ , and any of 

the products 1 0ˆP â  or Tˆ ˆP a ). This fact, together with the apparent lack in previous 
literature of analytical expressions for 0Var[ ]Â  and Var[ ]Â  (as opposed to well-known 
results on Var[ ]Ê ), might explain why computer programs for estimation of ARMA 



 
 
 
 
 
 
  Residuals in Time Series Models          1185 

  

models based on the innovations approach usually provide the practitioner with both the 
computed innovations êt and the corresponding normalized residuals ½ˆˆt t tz F ê  (see, 
for example, Brockwell and Davis 2002, pp. 164-167), whereas computer programs 
based on other approaches usually give only the conditional residuals or the unconditional 
residuals. However, the calculations required for obtaining 1 0ˆP â  or Tˆ ˆP a  need to be 
carried out only after model estimation, and, indeed, such calculations involve a 
negligible amount of computing time for most modern computers. 
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